f-Biharmonic and Bi-f-Harmonic Magnetic Curves in Three-Dimensional Normal Almost Paracontact Metric Manifolds
نویسندگان
چکیده
منابع مشابه
Indefinite Almost Paracontact Metric Manifolds
In this paper we introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it can not admit an (ε...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملON f -BI-HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS
A. Both bi-harmonic map and f -harmonic map have nice physical motivation and applications. In this paper, by combination of these two harmonic maps, we introduce and study f -bi-harmonic maps as the critical points of the f -bi-energy functional 1 2 ∫ M f |τ(φ)| dvg. This class of maps generalizes both concepts of harmonic maps and biharmonic maps. We first derive the f -biharmonic map ...
متن کاملSpecial connections in almost paracontact metric geometry
Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections: Levi-Civita, canonical (Zamkovoy), Golab and generalized dual. Their relationship is also analyzed with a special view towards their curvature. The particular case of an almost paracosymplectic manifold giv...
متن کاملOn (k, μ)-Paracontact Metric Manifolds
The object of this paper is to study (k, μ)-paracontact metric manifolds with qusi-conformal curvature tensor. It has been shown that, h-quasi conformally semi-symmetric and φ-quasi-conformally semi-symmetric (k, μ)-paracontact metric manifold with k 6= −1 cannot be an η-Einstein manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International electronic journal of geometry
سال: 2021
ISSN: ['1307-5624']
DOI: https://doi.org/10.36890/iejg.808379